Abstract

This paper deals with development of a novel poly(methyl methacrylate) (PMMA) based transparent nanocomposite made from using electrospun graphene-incorporated-Nylon 6 (Gr/PA-6) nanofibers as the reinforcement, in which both the mechanical and optical properties of the developed Gr/PA-6/PMMA nanocomposite are paid particular attention. By introducing the concept of electrospun PA-6 nanofibers as the dispersing carrier for graphene nanosheets and by employing a facile self-blending co-electrospinning approach for homogeneously hybridizing nanocomposite nanofibers of Gr/PA-6 with PMMA fibers, aggregation issue of the involved nanofillers (i.e., the Gr nanosheets and the Gr-incorporated PA-6 nanofibers) within the PMMA matrix could be effectively addressed. Visible light transmittance and tensile mechanical properties of the hot-pressed Gr/PA-6/PMMA nanocomposite were examined in relation to the loading fractions of the Gr nanosheets in the nanocomposite. It was demonstrated that a significant enhancement in tensile mechanical properties of the Gr/PA-6/PMMA nanocomposite was accomplished at a Gr loading of merely 0.01 wt%; that is, a nearly 56%, 113% respective improvement of tensile strength, Young’s modulus, and noticeably above 250% increase of fracture toughness were achieved, while the transmittance of the nanocomposite was maintained above 70% (in other words, less than 10% loss in transparency in comparison with neat PMMA) in the visible wavelength range of 400–800 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.