Abstract

Indoor heating during winters accounts for a significant portion of energy consumed by buildings in regions of cold climate. Development of transparent coatings for windows that efficiently harvest solar energy can play a major role in reducing energy consumption and fuel costs incurred for winter heating. In recent years, there has been a great research effort towards designing transparent solar absorber coatings using nanophotonic structures. The potential of coatings based on planar multilayer structures, however, has received very little attention. In this work we investigate the performance of planar multilayer thin films using low-cost materials for design of transparent solar absorber window coatings. Our study led to the proposal of two planar multilayer designs. Simulation results predict that an increase in surface temperature by 27 K and 25 K, while maintaining mean visible transmittance of over 50% is possible using these designs. These results illustrate the great promise planar multilayer structures hold for winter thermal management of buildings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.