Abstract

We investigated transparent oxide thin-film transistors (TFTs) using n-(In2O3)0.9(SnO2)0.1/InGaZnO4 (n-ITO/IGZO) modulation-doped heterostructures, which are effective in achieving high carrier mobilities. From transmittance measurements and UV photoemission spectroscopy, n-ITO/IGZO modulation-doped heterostructures are expected to realize the type-II energy band lineup, in which both the conduction band minimum and the valence band maximum of n-ITO are higher in energy than those of IGZO. Van der Pauw Hall measurements revealed Hall mobility enhancement and two-dimensional behavior of electrons at the n-ITO/IGZO interface. Using the n-ITO/IGZO modulation-doped heterostructures, we obtained TFTs with higher electron mobility than that of IGZO TFTs. We consider that modulation doping is a promising method for performance improvements of TFTs using transparent oxide semiconductors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call