Abstract

Development of renewable, biodegradable and biocompatible high-performance biomass materials is in great demand for the creation of a low-carbon society. Here, a series of konjac glucomannan (KGM) nanocomposite films reinforced by 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCNs) were fabricated from aqueous system by casting pathway. The composites exhibited nanolayered structure and intermolecular hydrogen bonds formed between KGM and TOCN, resulting in their good compatibility. Moreover, the incorporation of TOCN enhanced the mechanical properties of KGM significantly. Particularly, with an increase of TOCN content from 0 to 20 wt%, the tensile strength and Young’s modulus of the composites increased from 59 MPa and 1.18 GPa to 180 MPa and 2.51 GPa, respectively; the elongation at break reached a maximum of 42.9% with 10 wt% TOCN addition, much higher than 25.6% of the neat KGM film. In addition, the composites also possessed excellent transparency and thermal stability. These biomass-based nanocomposite films are promising in the field of high-performance packaging materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.