Abstract

Conductive hydrogels (CHs) have attracted considerable attentions in the fields of wearable electronics, disease diagnosis, and artificial intelligence. However, it is still a great challenge to prepare a single CH system with integrated characteristics of high stretchability, good transparency, and multisensory function through a simple fabrication process. Herein, carboxylic cellulose nanofibers (CCNF) were used to assist the homogeneous distribution of opaque conductive poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT: PSS) into the crosslinked polyacrylamide network for the fabrication of stretchable and transparent interpenetrating network CH, aiming for a high-performance multisensory system. As expected, the ready formation of hydrogen bonds between the water molecules and a great deal of hydrophilic groups in the hydrogel endow the obtained CH with excellent humidity response behavior in a wide range (0–85%), and the introduction of CCNF and PEDOT: PSS is proved to be an effective strategy to enhance the humidity sensitivity, exhibiting great potential for the noncontact sensing of human respiration and finger movement. Meanwhile, it also displays excellent strain sensing behavior with favorable sensitivity in a broad range (0–837 %), fast response and reliable stability and reproducibility. Importantly, our prepared CH can also detect and discriminate complicated human activities and physiological signals. All these demonstrate the superiority of our prepared CH for the new generation of flexible wearable electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.