Abstract

Silica aerogels are unique porous materials possessing high visible-light transparency and low thermal conductivity. However, the practical applications are limited due to the native fragility of silica, and a lot of research focuses on the improvement of mechanical properties by organic–inorganic hybridization, and so forth. Here, the first synthesis of polyethylsilsesquioxane (PESQ; CH3CH2SiO1.5) and polyvinylsilsesquioxane (PVSQ; CH2═CHSiO1.5) aerogels is reported. The resultant PESQ and PVSQ aerogels obtained through a two-step acid–base sol–gel reaction in a surfactant-based solution exhibit visible-light transmittance and flexibility against compression without collapsing. The microstructural variations of these aerogels are systematically investigated by positron annihilation lifetime spectroscopy (PALS) in order to clarify the differences in properties derived from substituent groups. Furthermore, a post cure on the PVSQ wet gel using a radical initiator induces polymerization of vinyl groups in t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.