Abstract

This work describes the development of transparent high-strength Yttria-Stabilized Zirconia (YSZ) ceramics with ultra-fine grain size utilizing conventional pressure-less densification. Starting with nanoparticles with diameter < 10 nm, it was possible to achieve full densification (>99.5% of theoretical density) at a sintering temperature of 1100–1200 °C. The average grain size of the resulting dense ceramics was 75 nm in 3 mol. % YSZ and 85 nm in 8 mol. % YSZ, showing in-line light transmission of 38% and 51% at a wavelength of 800 nm and average biaxial strength (piston on three balls test on samples of diameter 12 mm and thickness 1 mm) of 1980 MPa and 680 MPa, respectively. The nano-grained structure, absence of color centers, and miniaturization of residual pores enable the excellent light transmission. The high biaxial strength is attributed to the refined microstructure, but also to the martensitic tetragonal-to-monoclinic phase transformation that remains active even in nano-sized zirconia grains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.