Abstract

AbstractDynamic windows allow user control over light and heat flow to save energy and maximize comfort. Reversible metal electrodeposition (RME) dynamic windows can uniquely tint to a color‐neutral privacy state (0.1% visible light transmission). The design parameters of transparent metal mesh counter electrodes for high‐contrast RME dynamic windows: high transparency, charge capacity and surface area with low haze, sheet resistance and cost are discussed, concluding that woven metal meshes meet these design parameters. Electroplated current is measured on an indium tin oxide electrode and two meshes with different wire spacings, showing the meshes’ cylindrical geometry enable them to draw more current per square area. The mesh material composition is analyzed to ensure cycling durability in a CuBi electrolyte by developing a transparent mesh with an inert core (stainless steel, SS), a thin Au coating, and a high charge‐capacity (1.5 C cm−2) CuBi outer coating. The study demonstrates that the films maintain a consistent Cu:Bi ratio and optical properties after 250 privacy cycles or 1500 cycles to 10% transmission, showing that the Cu and Bi coating is effective in keeping the films from becoming Cu rich with cycling. Finally, a 100 cm2 device with excellent uniformity and color neutrality is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.