Abstract

Transparent conductors (TCs) represent key components in many applications from optoelectronic devices to electromagnetic shielding. While commercial applications typically use thin films of indium tin oxide, this material is brittle and increasingly scarce, meaning higher performing and cheaper alternatives are sought after. Solution-processible metals would be ideal owing to their high conductivities and printability. However, due to their opacity to visible light, such films need to be very thin to achieve transparency, thus limiting the minimum resistance achievable. One solution is to print metallic particles in a grid structure, which has the advantages of high tunable transparency and resistance at the cost of uniformity. Here, we report silver nanosheets that have been aerosol jet printed into grids as high-performance transparent conductors. We first investigate the effect of annealing on the silver nanosheets where we observe the onset of junction sintering at 160 °C after which the silver network becomes continuous. We then investigate the effect of line width and thickness on the electrical performance and the effect of varying the aperture dimensions on the optical performance. Using these data, we develop simple models, which allow us to optimize the grid and demonstrate a printed transparent conductor with a transmittance of 91% at a sheet resistance of 4.6 Ω/sq.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call