Abstract

We investigated the structural and transparent conductive properties of oxygen-deficient TiOx films that were deposited by metal-mode reactive electron cyclotron resonance plasma sputtering from a Ti target at 400 °C. Crystallites in a strongly reduced state (x≈1) had face centered cubic (fcc) structures with the resistivities ranging from 10-4 to 10-3 Ω cm, and the optical transmittance in the visible wavelength was between 25 and 55%. In a sufficiently oxidized state (x≈2), rutiles nucleated with resistivites higher than 10-2 Ω cm, and the optical transmittance was between 60 and 80%. The intermediate composition (1< x < 2) corresponded to fcc structures although the crystallinity approached an amorphous state with increasing x. Crystallization into magneli phases (TinO2n-1) was observed only for thick films at deposition temperatures higher than 500 °C. Carriers were n-type for rutile, but p-type for the fcc and magneli phases. Nb-doped TiOx films were produced by metal-mode sputtering of TiOx with co-sputtering Nb and O from an Nb2O5 target. The donor role of Nb5+ could be identified only in the oxidized rutile state, but the resistivity increased at higher Nb2O5 sputtering powers due to oxidation of Nb atoms that substituted Ti sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call