Abstract

In this work, high transparent bacterial cellulose (HTBC) biocompatible membranes were produced to be used as substrates in organic light-emitting diodes (OLEDs). These multifunctional membranes are based on bacterial cellulose (BC) and an organic–inorganic sol, composed of boehmite (Boe) nanoparticles and epoxi modified siloxane (GTPS). In order to be used as substrates, BC/Boe-GPTS membranes were covered with silicon dioxide (SiO2) and indium tin oxide (ITO) thin films deposited at room temperature using radio frequency (RF) magnetron sputtering. Visible light transmission improves to 88%, instead of 40% previously achieved. The electrical properties for HTBC/SiO2/ITO substrate shows that the ITO deposited films are n-type doped semiconductors with resistivity of 2.7 × 10−4 Ω cm, carrier concentration of − 1.48 × 1021 cm−3, and mobility of 15.2 cm2 V−1 s−1. These values are comparable to those of commercial ITO deposited onto glass substrates. After the characterization of the HTBC film, we used it as a substrate for the fabrication of a small molecule organic light-emitting diode OLED. The maximum efficiencies obtained were 1.95 cd/A and 1.68 cd/A for the reference OLED and the HTBC OLED, respectively. The HTBC OLED efficiency is then around 86% of the standard ITO-based OLED. This is clearly a good improvement, since previous BC-based simple architecture devices without Boe-GPTS have an efficiency 50% smaller than that of the standard OLED.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.