Abstract

Cyanoglycoside-modified flexible protein films, exhibiting a high level of transparency of ≈46 to 83%, were successfully prepared from lysozyme and glycerol with varying amounts of amygdalin (20, 40, and 60%) using water as a solvent. The increasing percentage of amygdalin leads to a drastic improvement of the hydrophilicity of the surface with a decrease in the water contact angle to 5.6°, resulting in superhydrophilicity. The increasing percentage of amygdalin led to a significant improvement in the surface's hydrophilicity, resulting in a reduced water contact angle of 5.6° and achieving superhydrophilicity. This superhydrophilic characteristic is particularly relevant to the excellent antifogging and self-cleaning properties of the resulting protein films. In addition to enhanced flexibility, the films also exhibited considerably improved thermal stability with a 40% loading of amygdalin in the protein solution. The superior mechanical, optical, and thermal properties of amygdalin-modified films are due to the strong hydrogen bonding with the peptides of lysozyme, as evidenced by the disappearance of amide bands in the cured protein films. Therefore, these transparent protein films, with their antifogging and enhanced thermal stability properties, can be potentially used for different packaging and coating applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call