Abstract

Wearable electronic devices have attracted numerous attention in tactile sensing, motion detecting, and biomedical signal monitoring. In particular, a wearable and self-powered sensor combining all the merits of sensitivity, transparency, stretchability, and flexibility is highly demanded to adapt human skins. Herein, we report a fully transparent, highly stretchable, and self-powered contact-separation triboelectric nanogenerator (TENG) as a tactile sensor. The TENG consists of a double-network ionogel with the transparency, stretchability, and conductivity as the electrode and one friction layer, and patterned polydimethylsiloxane (PDMS) as another friction layer. The fabricated sensor reaches a maximum sensitivity of 1.76 V N−1 when detecting impacting forces in the range of 0.1–1 N. Meanwhile, with good stretchability of the sensor, the triboelectric signals maintain a good linearity with impacting forces at different tensile ratios (0%, 10%, 50%, and 80% strain). These properties enable the sensor to be capable of monitoring a variety of human activities, including finger touching and bending, breathing, and pulse beating. We believe such a transparent, stretchable and self-powered tactile TENG sensor has tremendous application potential in wearable and soft electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.