Abstract

This review focuses on the growth and optical properties of amorphous zinc oxide (ZnO) thin films. A high quality ZnO films fabricated by dip-coating (sol–gel) method were grown on quartz and glass substrates at temperature equal to 350K. The amorphous nature of the films was verified by X-ray diffraction. Atomic Force Microscopy was used to evaluate the surface morphology of the films. The optical characteristics of amorphous thin films have been investigated in the spectral range 190–1100nm. Measurement of the polarized optical properties was shows a high transmissivity (80–99%) and low absorptivity (<5%) in the visible and near infrared regions at different angles of incidence. Linear optical properties were investigated by classic and Time-Resolved Photoluminescence (TRPL) measurements. Photoluminescence spectrum exhibits a strong ultraviolet emission while the visible emission is very weak. An innovative TRPL technique has enabled the measurement of the photoluminescence decay time as a function of temperature. TRPL measurements reveal a multiexponential decay behavior typical for amorphous thin films. Second and third harmonic generation measurements were performed by means of the rotational Maker fringe technique using Nd:YAG laser at 1064nm in picosecond regime for investigations of the nonlinear optical properties. The obtained values of second and third order nonlinear susceptibilities were found to be high enough for the potential applications in the optical switching devices based on refractive index changes. Presented spectra confirm high structural and optical quality of the investigated zinc oxide thin films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.