Abstract

Many myodocopid ostracods are unusual in that they have well-developed compound eyes yet must view their environment through a shell. The cypridinid Macrocypridina castanea is relatively large among ostracods (about 5-10 mm) and is a pelagic predator. This species possess highly pigmented shells with a transparent region lying just above the eye. Here we examine the ultrastructure and transparency of this window using electron microscopy, serial-block face scanning electron microscopy and X-ray diffraction analysis and optical modelling. An internal, laminar stack was identified within the window region of the shell that formed a more regular half-wave reflector than in non-window regions, and where the distance between molecules in the chitin-protein fibrils decreases as compared to the non-window area. This results in excellent transmission properties-at around 99% transmission-for wavelengths between 350 and 630 nm due to its half-wave reflector organization. Therefore, blue light, common in the mid and deep sea, where this species inhabits, would be near-optimally transmitted as a consequence of the sub-micrometre structuring of the shell, thus optimizing the ostracod's vision. Further, pore canals were identified in the shell that may secrete substances to prevent microbial growth, and subsequently maintain transparency, on the shell surface. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.