Abstract

Microplates for use in resource-limited laboratories should ideally not require processes that involve substantial large-scale production in order to be viable. We describe and demonstrate here an approach of using a silicone sheet with holes, conveniently cut out precisely using an inexpensive cutting plotter to correspond with regions where liquid is to be dispensed, and attaching it to a transparency to create very thin well arrays. With this, the contact angle hysteresis behavior of liquid could be harnessed to produce taller drop shapes so that the fiber probe used could read in the emitted light more effectively. Experimentation conducted revealed fluorescence measurements that were significantly more sensitive than standard microplates, notwithstanding that smaller volumes of liquid were needed. This was achieved using both the fiber optic and imaging evaluation modes. The two methods investigated, one with a lid placed and one without, showed the latter to produce marginally more sensitive readings as opposed to improved immunity from the environment with the former. These favorable measurement characteristics were found to be achievable with an estimated production cost of AU $0.40 and fabrication times of 3.5min (96 wells) and 6.5min (384 wells) per plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.