Abstract

Low-power IoT sensing applications have proliferated, focusing on self-powered sensors. Accordingly, researchers have investigated serval procedures for the power management of such self-powered sensors. Obesely, minimizing the energy consumed by the sensor is critical to efficient power management. However, another challenge is still considered in harvesting energy effectively. Herein, we provide an attempt to investigate light harvesters that are capable of semi-transparent applications. Six samples were simulated under three light sources while performing a unifacial and bifacial optical injection. The optoelectronic numerical model has shown the utility of perovskite solar cells to harvest the AM1.5G solar spectrum up to 28.63%, with transparency reaching 87%. On the other hand, the bifacial condition boosted the overall cell efficiency to nearly 33% with transparency of 90%, without considering Fresnel glass reflection of 8%. The proposed bifacial cell is a primary light-harvesting source for four IoT sensing applications, including biomedical sensing, underwater harvesting, and IoT sensing in intelligent vehicles and buildings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.