Abstract

Steady and unsteady aerodynamic data were measured on a rectangular wing with a 12 percent thick supercritical airfoil mounted in the NASA Langley Transonic Dynamics Tunnel. The wing was oscillated in pitch to generate the unsteady aerodynamic data. The purpose of the wind-tunnel test was to measure data for use in the development and assessment of transonic analytical codes. The effects on the wing pressure distributions of Mach number, mean angle of attack, and oscillation frequency and amplitude were measured. Results from the newly-developed XTRAN3S program (a non-linear transonic small disturbance code) and from the RHOIV program (a linear lifting surface kernel function code) were compared to measured data for a Mach number of 0.7 and for oscillation frequencies ranging from 0 to 20 Hz. The XTRAN3S steady and unsteady results agreed fairly well with the measured data. The RHOIV unsteady-result agreement was fair but, of course, did not predict shock effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.