Abstract
Airfoils operating in the unexplored high-Mach—low-Reynolds number regime are computationally investigated. The motivations are 1) quantificatio n of achievable airfoil performance levels; 2) quantificatio n of parameter sensitivities which impact vehicle sizing; 3) identification of possible shortcomings in the computational methods employed; and 4) identification of test data required for adequate validation of the airfoil designs and performance prediction methods. The investigation centers on candidate airfoils developed for proposed ultrahigh altitude aircraft (UHAA) having both a high-ceiling and a long-range requirement. Computational studies indicate that 35-km ceiling performance at M — 0.60, Re — 200,000 hinges on the effective use of transonic flow to enhance transition and reduce separation-bubble losses. The separation bubbles become associated with large lambda shock structures at the highest tolerable Mach numbers. Airfoil performance predictions are parameterized by quantities dependent only on altitude and vehicle characteristics, and independent of flight trim conditions. For the airfoils designed, no flaps are necessary to achieve nearly optimal performance at both 35-km ceiling conditions as well as lower 15-25-km altitudes where long-range cruise would occur. Variation in airfoil thickness between 11-15% has surprisingly little impact on aerodynamic performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.