Abstract

The aim of this paper is to develop a profile of axisymmetric minimum length nozzle giving a uniform and parallel flow at the exit section. The study is done at high temperature, lower than the dissociation threshold of the molecules. The design is made by the method of characteristics (MOC). The variation of the specific heats with the temperature is considered. The numerical results have been validated with CFD simulation Ansys-Fluent software. The second part of this study is to calculate and analyze the transonic flow field of this supersonic nozzle. The computation of the flow field characteristics at the throat is thus essential to the nozzle developed thrust value and therefore to the aircraft or rocket it propels. An investigation was conducted to analyze the effects of parameters on the position of the sonic line. These parameters include stagnation temperature T0, radius of the nozzle, types of gases, and exit Mach number ME.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.