Abstract

The emphasis of the present study is to understand the effects of various flowfield and geometrical parameters in the nearfield region of a scaled-up film-cooling hole on a flat test plate. The effect of these different parameters on adiabatic wall effectivenesses, heat transfer coefficients, discharge coefficients and the near-hole velocity field will be addressed. The geometrical parameters of concern include several angles of inclination and rotation of a cylindrical film-cooling hole and two different hole shapes — a fanshaped hole and a laidback fanshaped hole. The fluid dynamic parameters include both the internal and external Mach number as well as the mainstream-to-coolant ratios of total temperature, velocity, mass flux, and momentum flux. In particular, the interaction of a film-cooling jet being injected into a transonic mainstream will be studied. This paper includes a detailed description of the test rig design as well as the measuring techniques. Firstly, tests revealing the operability of the test rig will be discussed. Finally, an outlook of the comprehensive experimental and numerical program will be given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.