Abstract
Parker’s classical stellar wind solution [] describing steady spherically symmetric outflow from the surface of a star is revisited. Viscous dissipation is retained. The resulting system of equations has slow-fast structure and is amenable to analysis using geometric singular perturbation theory. This technique leads to a reinterpretation of the sonic point as a folded saddle and the identification of shock solutions as canard trajectories in space []. The results shed light on the location of the shock and its sensitivity to the system parameters. The related spherically symmetric stellar accretion solution of Bondi [] is described by the same theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.