Abstract

Transonic aeroelastic stability and response analyses are performed for the MBB A-3 supercritical airfoil. Three degrees of freedom are considered: plunge, pitch, and aileron pitch. The control of airfoil stability and response in transonic flow are studied. Stability analyses are performed using a Pade aeroelastic model based on the use of LTRAN2-NLR transonic small disturbance finite difference computer code. Response analyses are performed by coupling the structural equations of motion to the unsteady aerodynamic forces of LTRAN2-NLR. The focus is on transonic time marching transient response solutions using modal identification to determine stability. Frequency and damping of these modes are directly compared in the complex s-plane with Pade model eigenvalues. Transonic stability and response characteristics of 2-D airfoils are discussed and comparisons are made. Application of the Pade aeroelastic model and time marching analyses to flutter suppression using active controls is demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.