Abstract

Ships' ballast water and sediments have long been linked to the global transport and expansion of invasive species and thus have become a hot research topic and administrative challenge in the past decades. The relevant concerns, however, have been mainly about the ocean-to-ocean invasion and sampling practices have been almost exclusively conducted onboard. We examined and compared the dinoflagellate cysts assemblages in 49 sediment samples collected from ballast tanks of international and domestic routes ships, washing basins associated with a ship-repair yard, Jiangyin Port (PS), and the nearby area of Yangtze River (YR) during 2017–2018. A total of 43 dinoflagellates were fully identified to species level by metabarcoding, single-cyst PCR-based sequencing, cyst germination and phylogenetic analyses, including 12 species never reported from waters of China, 14 HABs-causing, 9 toxic, and 10 not strictly marine species. Our metabarcoding and single-cyst sequencing also detected many OTUs and cysts of dinoflagellates that could not be fully identified, indicating ballast tank sediments being a risky repository of currently unrecognizable invasive species. Particularly important, 10 brackish and fresh water species of dinoflagellate cysts (such as Tyrannodinium edax) were detected from the transoceanic ships, indicating these species may function as alien species potentially invading the inland rivers and adjacent lakes if these ships conduct deballast and other practices in fresh waterbodies. Significantly higher numbers of reads and OTUs of dinoflagellates in the ballast tanks and washing basins than that in PS and YR indicate a risk of releasing cysts by ships and the associated ship-repair yards to the surrounding waters. Phylogenetic analyses revealed high intra-species genetic diversity for multiple cyst species from different ballast tanks. Our work provides novel insights into the risk of bio-invasion to fresh waters conveyed in ship's ballast tank sediments and washing basins of shipyards.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.