Abstract

The nit-2 gene of Neurospora crassa is a major regulatory gene for control of nitrogen metabolism. Synthesis of the enzyme L-amino acid oxidase requires a functional nit-2 gene product and is also controlled by amino acid induction and nitrogen catabolite repression. Electrophoretic variants of L-amino acid oxidase have been employed to demonstrate that in heterokaryons, a nit-2 (+) gene product can turn on the expression of this enzyme in its own nucleus and also in nuclei that possess a nit-2 mutant. This trans-nuclear effect is only partial since the variant coded for in the nucleus containing the nit-2 mutant allele is always present in lower amounts than the alternative form.Two additional putative nitrogen control genes, MS5 and en(am)1, have been found to have clear effects upon the expression of L-amino acid oxidase. The en(am)1 mutant appears to result in an unusual case of reversal of the control present in wild-type: the enzyme is expressed in a constitutive fashion and inducers, required for enzyme synthesis in wild-type, actually reduce the level of L-amino acid oxidase in en(am)1. The MS5 mutant shows a substantial release from the usual nitrogen catabolite repression exerted by glutamine in wild-type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.