Abstract

Transmyocardial laser revascularization (TMLR) has been used to provide enhanced myocardial perfusion in patients not suitable for coronary revascularization or angioplasty. This study investigates the acute changes in myocardial perfusion after TMLR with a Holmium:Yttrium-Aluminium-Garnet (YAG) laser with a thermal imaging camera in a model of acute ischaemia, and confirms its midterm effects by post-mortem investigation of magnetic resonance imaging and histopathological examination. Acute myocardial ischaemia was induced by occlusion of the dominant diagonal branch in ten sheep. Perfusion measurements were undertaken first in the unaffected myocardium, then after temporary occlusion of the coronary to obtain a control measurement for ischaemic myocardium. Myocardial perfusion was then evaluated during reperfusion after release of coronary occlusion. Then the coronary was permanently occluded and 20.5+/-2 channels were drilled with the Holmium:YAG laser and perfusion was measured again. The other four sheep served as control with untreated ischaemia. All animals were sacrificed after 28 days following administration of gadolinium i.v. to serve as contrast medium for magnetic resonance tomography. The hearts were subjected to magnetic resonance tomography and histopathological examination. Intraoperative perfusion measurements revealed a decreased perfusion after temporary occlusion and an increased perfusion in reperfused myocardium. After TMLR, no improvement of myocardial perfusion above the ischaemic level could be shown. Magnetic resonance images could neither confirm patent laser channels nor viable myocardium within ischaemic areas. On histology no patent endocardial laser channel could be detected. The transmural features were myocardial infarct with scar tissue. In the presented sheep model with acute ischaemia, TMLR with a Holmium:YAG laser did not provide acute improvement of myocardial perfusion as assessed by a thermal imaging camera. This would suggest no direct contribution of newly created laser channels to myocardial perfusion. As chronic effects are concerned, no perfused laser channels could be identified by later magnetic resonance imaging or histology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.