Abstract

The activation and transmutation of tungsten and tantalum as plasma facing materials was assessed for a helium cooled divertor irradiated in a typical fusion power reactor based on the use of Helium-cooled Lithium Lead (HCLL) blankets. 3D activation calculations were performed by applying a programme system linking the Monte Carlo transport code MCNP and the fusion inventory code FISPACT through an appropriate interface. Special attention was given to the proper treatment of the resonance shielding of tungsten and tantalum by using reaction rates provided directly by MCNP on the basis of continuous energy activation cross-section data. It was shown that the long-term activation behaviour is dominated by activation products of the assumed tramp material while the short-term behaviour is due to the activation of the stable Ta and W isotopes. The recycling limit for remote handling of 100 mSv/h can be achieved after decay times of 10 and 50 years for Ta and W, respectively. The elemental transmutation rates of Ta and W were shown to be on a moderate level for the HCLL-type fusion power reactor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call