Abstract

Hardware imperfections in RF transmitters introduce features that can be used to identify a specific transmitter amongst others. Supervised deep learning has shown good performance in this task but using datasets not applicable to real world situations where topologies evolve over time. To remedy this, the work rests on a series of datasets gathered in the Future Internet of Things/Cognitive Radio Testbed [4] to train a convolutional neural network (CNN), where focus has been given to reduce channel bias that has plagued previous works and constrained them to a constant environment or to simulations. The most challenging scenarios provide the trained neural network with resilience and show insight on the best signal type to use for identification, namely packet preamble. The generated datasets are published on the Machine Learning For Communications Emerging Technologies Initiatives web site (Datasets and usage and generation scripts can also be found there: https://wiki.cortexlab.fr/doku.php?id=tx-id .) in the hope that they serve as stepping stones for future progress in the area. The community is also invited to reproduce the studied scenarios and results by generating new datasets in FIT/CorteXlab.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.