Abstract

In cellular wireless communication systems, there have been various receiver-based techniques for performance improvement. However, it may be desirable to use transmitter- based techniques to improve the down-link capacity, since the implementation complexity is less critical at a base station (BS) than at a mobile station (MS). This paper presents a transmitter- based processing for the down-link direct-sequence code-division multiple-access (DS/CDMA) systems with multiple transmit antennas. We propose a combined pre-rake/pre-decorrelating approach. This approach combines the advantage of pre-rake scheme, to achieve diversity gain and average received signal-to- noise ratio (SNR) gain, with that of pre-decorrelating scheme, to suppress multiple access interference (MAI) and multipath interference (MPI). Furthermore, to make the total transmit power the same as that without pre-rake/pre-decorrelating processing, two power normalization methods are presented. Simulation results show that the proposed schemes significantly outperform the conventional transmitter-based techniques. The effects of the number of users and the block size on the bit error rate (BER) performance are also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.