Abstract
Silica, cellulose and polymethylmethacrylate tubes with inner diameters of ten to a few hundred microns are commonly used as blood vessel phantoms in in vitro studies of microbubble or nanodroplet behavior during insonation. However, a detailed investigation of the ultrasonic fields within these micro-tubes has not yet been performed. This work provides a theoretical analysis of the ultrasonic fields within micro-tubes. Numerical results show that for the same tube material, the interaction between the micro-tube and megaHertz-frequency ultrasound may vary drastically with incident frequency, tube diameter and wall thickness. For 10 MHz ultrasonic insonation of a polymethylmethacrylate (PMMA) tube with an inner diameter of 195 μm and an outer diameter of 260 μm, the peak pressure within the tube can be up to 300% of incident pressure amplitude. However, using 1 MHz ultrasound and a silica tube with an inner diameter of 12 μm and an outer diameter of 50 μm, the peak pressure within the tube is only 12% of the incident pressure amplitude and correspondingly, the spatial-average-time-average intensity within the tube is only 1% of the incident intensity. (E-mail: spqin@ucdavis.edu)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.