Abstract

This study theoretically investigates the transmittance properties of a one-dimensional photonic crystal containing magnetized cold plasma and high-temperature superconductor materials. The cutoff frequency, as a function of the magnetic field, electron density of the plasma layer, and temperature, will be investigated. The results illustrate that the temperature, electron density, and variations of the magnetic field affect the cutoff frequency. In addition, the shift trend in the cutoff frequency proves to be dependent on the polarization due to the presence of polarization-dependent magnetized cold plasma. Moreover, in temperature-dependent transmittance, weak oscillation and intensity can be seen at higher temperatures, which is in sharp contrast to low-temperature superconductor-dielectric structures. The proposed structure could certainly provide helpful information for the design of new types of antennas, reflectors, and high-pass filters at microwave frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call