Abstract

We compare space-time coding (transmit diversity) and random beamforming in a space-division multiple access/time-division multiple access single-cell downlink system with random packet arrivals, correlated block-fading channels, and non-perfect channel state information at the transmitter due to a feedback delay. Our comparison is based on system stability. The ability of accurately predicting the channel signal-to-noise ratio dominates the performance of opportunistic beamforming, even under the optimistic assumption that the sequence of beamforming matrices is perfectly known a priori by the receivers. Our results show that the relative merit of opportunistic beamforming versus space-time coding strongly depends on the channel Doppler bandwidth. Therefore, previous naive conclusions on the fact that transmit diversity always hurts the system performance under multiuser-diversity scheduling should be taken with great care

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.