Abstract

Proposed next-generation radar systems will have multiple transmit apertures with complete flexibility in the choice of the signals transmitted at each aperture. Here we propose the use of multiple signals with arbitrary cross-correlation matrix R, and show that R can be chosen to achieve or approximate a desired spatial transmit beampattern. Two specific problems are addressed. The first is the constrained optimization problem of finding the value of R which causes the true transmit beampattern to be close in some sense to a desired beampattern. This is approached using convex optimization techniques. The second is the problem of designing multiple constant-modulus waveforms with given cross-correlation R. The use of coded binary phase shift keyed (BPSK) waveforms is considered. A method for finding the code sequences based on random signaling with a structured correlation matrix is proposed. It is also shown that by restricting the class of admissible waveforms one reduces the set of possible signal correlation matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.