Abstract

This article investigates the design of hybrid digital and analog transmit/receive beamformers for orthogonal frequency division multiplexing dual-function radar-communication system. Specifically, we model the hybrid beamforming design by simultaneously optimizing the spectrum efficiency of communication and approximate output signal-to-interference noise ratio of radar sensing, through a flexible performance tradeoff. Due to the coupling relationship among the beamformers in the hybrid structure and the independence of signals in different frequency bands, the resultant optimization problem is NP-hard. Hence, a consensus alternating direction method of multipliers approach is designed to tackle the difficulty. The transmit hybrid beamformer is obtained by introducing auxiliary variables and exploiting the block continuous upper bound minimization method. Then, the receive beamformer can be optimized via generalized eigenvalue decomposition. Numerical simulations are provided to demonstrate the effectiveness of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.