Abstract

Wind power integration could be restricted by inflexible operation of combined heat and power (CHP) units due to the strong linkage between power generation and heating supply in winter. Utilization of the heat storage capacity of existing district heating network (DHN) is a cost-effective measure to enhance power system operational flexibility to accommodate large amounts of variable wind power. In this paper, transmission-constrained unit commitment (UC) with combined electricity and district heating networks (UC-CEHN) is formulated with a linear DHN model to coordinate short-term operation of electric power and district heating systems. The heat storage capacity of the DHN is modeled by capturing the quasi-dynamics of pipeline temperature. Both deterministic and robust models are developed to incorporate UC with the linear DHN model. Case studies are carried out for two test systems to show the potential benefits of the proposed method in terms of wind power integration and efficient operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.