Abstract

This study presents a novel approach to the design and implementation of transmission-type negative group delay (NGD) networks based on a coupled line doublet structure. To improve the reflection coefficients, a quarter-wavelength transmission line is connected between the input and through ports of a coupled line section. For the doublet structure, two coupled line sections are arranged in a symmetrical manner by connecting them back-to-back with the help of the quarter- wavelength through line. For the experimental demonstration, two planar NGD networks (unmatched and matched doublet NGD networks) are designed, simulated and measured at a centre frequency of 2.14 GHz. From the measurement, a group delay (GD) of −5.66 ns and signal attenuation (SA) of 18.78 dB were obtained in the case of an unmatched NGD network. Similarly, for the matched NGD case, a GD of −6.33 ns, SA of 20.69 dB and input/output return losses >29 dB were obtained at the centre frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.