Abstract

We study the wave transport properties near the Dirac-like point at the Brillouin zone center in two-dimensional dielectric photonic crystals with finite thickness. Both simulations and microwave experiments confirm that the transmittance is nearly inversely proportional to the length (L) of the samples in the propagation direction near the Dirac-like point. This transmittance law comes from the conically shaped dispersion. Since the conical singularity at the Brillouin zone center corresponds to zero refractive index, the field at the Dirac-like point contains a basic component of nearly uniform field. In contrast, the field at the Dirac point in the corner of the hexagonal Brillouin zone contains a basic component of inhomogeneous standing-wave–like field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call