Abstract

During summer 2007 Italy has experienced an epidemic caused by Chikungunya virus – the first large outbreak documented in a temperate climate country – with approximately 161 laboratory confirmed cases concentrated in two bordering villages in North–Eastern Italy comprising 3,968 inhabitants. The seroprevalence was recently estimated to be 10.2%. In this work we provide estimates of the transmission potential of the virus and we assess the efficacy of the measures undertaken by public health authorities to control the epidemic spread. To such aim, we developed a model describing the temporal dynamics of the competent vector, known as Aedes albopictus, explicitly depending on climatic factors, coupled to an epidemic transmission model describing the spread of the epidemic in both humans and mosquitoes. The cumulative number of notified cases predicted by the model was 185 on average (95% CI 117–278), in good agreement with observed data. The probability of observing a major outbreak after the introduction of an infective human case was estimated to be in the range of 32%–76%. We found that the basic reproduction number was in the range of 1.8–6 but it could have been even larger, depending on the density of mosquitoes, which in turn depends on seasonal meteorological effects, besides other local abiotic factors. These results confirm the increasing risk of tropical vector–borne diseases in temperate climate countries, as a consequence of globalization. However, our results show that an epidemic can be controlled by performing a timely intervention, even if the transmission potential of Chikungunya virus is sensibly high.

Highlights

  • During summer 2007 Italy has experienced the first large outbreak caused by Chikungunya virus (CHIKV) documented in a temperate climate country [1]

  • In this study we investigate the transmission potential of CHIKV in Italy, to provide insight into the possible impact of future outbreaks in temperate climate regions, and the effectiveness of the interventions performed during the outbreak, to provide insight into the epidemic control

  • We developed a model describing the temporal dynamics of the competent vector, known as Aedes albopictus, explicitly depending on climatic factors, coupled to an epidemic transmission model describing the spread of the disease in both humans and mosquitoes, which allowed us to reproduce several observed features of the epidemic

Read more

Summary

Introduction

During summer 2007 Italy has experienced the first large outbreak caused by Chikungunya virus (CHIKV) documented in a temperate climate country [1]. The population dynamics model was coupled to an epidemic transmission model describing the spread of the epidemic in both humans and mosquitoes (see Fig. 1), allowing the estimate of the crucial parameters of the epidemic (e.g. basic reproduction number, effective reproduction number, probability that a major outbreak of the disease would occur after the introduction of a single infective host) and the assessment of intervention strategies.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call