Abstract

A three-planetary-row linkage HMCVT scheme is designed for the operation requirements of low speed and high torque of tractors. The HM1 section adopts hydraulic mechanical power to begin its operations so that the tractor can obtain a greater transmission ratio at a low speed. The HM2 and HM3 sections adopt an “equal ratio” design so that the system has a better speed-regulation performance. The clutches controlling forward and backward movements are placed on the output shaft so that the forward and backward sections have a wider speed range. The stepless speed-regulation characteristics and torque characteristics of HMCVT are analyzed, and they can meet the kinematic and dynamic requirements. The transmission ratios of the three sections are as follows: HM1 section, 14-1.85; HM2 section, 1.85-1.04; HM3 section, 1.04-0.6. The corresponding tractor speed ranges are as follows: HM1 section, 0.2–14 km/h; HM2 section, 14–26 km/h; HM3 section, 32–46 km/h. According to energy conservation, the transmission efficiency of the system is analyzed in combination with the power flow characteristics; the highest transmission efficiencies are as follows: HM1 section, 0.85; HM2 section, 0.88; HM3 section, 0.92. When the system has cycle power, the overall transmission efficiency of the system is low and is greatly affected by the change in displacement ratio; when the system does not have cycle power, the transmission efficiency is less affected by the displacement ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.