Abstract
We propose a transmission distance-independent technique for modal dispersion compensation over few-mode fiber that uses a single-input multiple-output configuration and adaptive equalization. Our technique can compensate for the modal dispersion of a signal with 1-tap FIR filters regardless of the amount of modal delay difference, and enables us to utilize fiber with a large core and few modes as a long-haul transmission line. We also show numerically the advantage of few-mode photonic crystal fiber (PCF) for realizing a larger effective area (A(eff)), and finally we report a transmission over a large-core two-mode PCF with A(eff)>280 μm(2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.