Abstract

The spatial non-uniformities and temporal fluctuations in the normal stress transmitted across a sheared granular layer have been studied through a combination of experiments in a Jenike shear cell equipped with normal force (stress) transducers imbedded on the bottom shearing surface and discrete element method (DEM) simulations. Experiments were carried out with particles of different sizes and layers of different thicknesses; the normal stress was measured at several different shearing rates and at several positions on the bottom surface. The DEM simulations revealed a direct link between the spatial inhomogeneities and temporal fluctuations in the stress recorded in our measurements. We found that the dependence of the average normal stress on the bottom surface as a function of height mirrored that in Janssen's analysis of stresses in wall-bounded static assemblies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.