Abstract

An acoustic theory is developed to determine the sound transmission and attenuation through an infinite, hard-walled or lined, circular duct carrying compressible, sheared, mean flows and having a variable cross section. The theory is applicable to large as well as small axial variations, as long as the mean flow does not separate. Although the theory is described for circular ducts, it is applicable to other duct configurations - annular, two dimensional, and rectangular. The theory is described for the linear problem, but the technique is general and has the advantage of being applicable to the nonlinear case as well as the linear case. The technique is based on solving for the envelopes of the quasi-parallel acoustic modes that exist in the duct instead of solving for the actual wave. A computer program was developed. The mean flow model consists of a one dimensional flow in the core and a quarter-sine profile in the boundary layer. Results are presented for the reflection and transmission coefficients in ducts with varying slopes and carrying different mean flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.