Abstract

A molecule-gear rotating without a lateral jittering effect is constructed using a single copper adatom as a physical axle on a lead superconducting surface. The molecule-gear has a diameter of 1.2 nm with 6 tert-butyl-teeth. It is mounted on this Cu axle using the atom/molecule manipulation capability of a low temperature scanning tunneling microscope (LT-STM). Transmission of rotational motions between 2 molecule-gears, whose axles have to be exactly 1.9 nm separated, is functioning when this train of molecule-gears is completed with a molecule-handle. To manipulate the molecule-handle laterally, the first molecule-gear of the train directly entangled with the molecule-handle is step by step rotated around its Cu adatom axle. It drives the second molecule-gear mechanically engaged with the first gear to rotate like along a train of macroscopic solid-state gears. Such rotation transmission is one of the most basic function for the future construction of a complex molecular machinery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.