Abstract

We analyze an idealized model for the transmission or flow of particles, or discrete packets of information, in a weight bearing branching hierarchical two dimensional network and its variants. The capacities add hierarchically down the clusters. Each node can accommodate a limited number of packets, depending on its capacity, and the packets hop from node to node, following the links between the nodes. The statistical properties of this system are given by the Maxwell-Boltzmann distribution. We obtain analytical expressions for the mean occupation numbers as functions of capacity, for different network topologies. The analytical results are shown to be in agreement with the numerical simulations. The traffic flow in these models can be represented by the site percolation problem. It is seen that the percolation transitions in the 2D model and in its variant lattices are continuous transitions, whereas the transition is found to be explosive (discontinuous) for the V lattice, the critical case of the 2D lattice. The scaling behavior of the second-order percolation case is studied in detail. We discuss the implications of our analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.