Abstract

The transmission of a normally incident wave through a Z-shaped channel metallic slit array with metallic bar inside has been investigated by using finite-difference time-domain method. It is obtained that transmission spectra are nearly the same of the slit array with straight channel as that with Z-shaped channel in the condition the material of the slit array the same as that of the inner bar. If the Au bar is replaced by Al of the Au slit array, both resonance modes red shift obviously, especially for the structure with bent channel. Along with the width of the inner bar increasing, the localized waveguide resonance mode red shifts regularly with a tiny decrease of the peak value of all the kinds of composed structure introduced here, and the surface plasmon resonance mode red shifts regularly accompanied by peak value changing uniformly for the structures with only one type of metal. However, the surface plasmon resonance behaves different obviously, its center peak first moves to a larger wavelength fast, then red shifts slowly, for the Au-film Al-bar structure, but that moves in a very small wavelength range for the Al-film Au-bar one. The results obtained here are helpful to design subwavelength optical devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call