Abstract

Abstract We investigate numerically the transmittance of light through gold double-layer structures with periodic coaxial and non-coaxial slits. We attribute the enhanced optical transmission to the surface plasmon resonance collaborating with the localized waveguide resonance. The transmission spectra and the surface electric fields are used to characterize the resonances of both types. For the coaxial system, with the increase of the slit width of the second layer, the resonance peak values of both types increase sharply at first until the two layers have the same slit width and then decrease dramatically; additionally, the center of the localized waveguide resonance peak shifts to shorter wavelength noticeably, but the surface plasmon peak center moves negligibly. As regards the non-coaxial structure, it shows a similar behavior of the localized waveguide resonance peak to that of the coaxial one; however, the surface plasmon resonance peak behaves in a different way. These results may be associated with the surface plasmon coupling modes and the Fabry–Perot cavity modes in the double-layer structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.