Abstract
The cochlear aqueduct connecting intralabyrinthine and cerebrospinal fluids (CSF) acts as a low-pass filter that should be able to transmit infrasonic pressure waves from CSF to cochlea. Recent experiments have shown that otoacoustic emissions generated at 1 kHz respond to pressure-related stapes impedance changes with a change in phase relative to the generator tones, and provide a non-invasive means of assessing intracochlear pressure changes. In order to characterize the transmission to the cochlea of CSF pressure waves due to respiration, the distortion-product otoacoustic emissions (DPOAE) of 12 subjects were continuously monitored around 1 kHz at a rate of 6.25 epochs/s, and their phase relative to the stimulus tones was extracted. The subjects breathed normally, in different postures, while thoracic movements were recorded so as to monitor respiration. A correlate of respiration was found in the time variation of DPOAE phase, with an estimated mean amplitude of 10°, i.e. 60 mm water, suggesting little attenuation across the aqueduct. Its phase lag relative to thoracic movements varied between 0° and −270°. When fed into a two-compartment model of CSF and labyrinthine spaces, these results suggest that respiration rate at rest is just above the resonance frequency of the CSF compartment, and just below the corner frequency of the cochlear-aqueduct low-pass filter, in line with previous estimates from temporal bone and intracranial measurements. The fact that infrasonic CSF waves can be monitored through the cochlea opens diagnostic possibilities in neurology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.