Abstract

While much is known about the human papillomavirus (HPV) productive cycle, the mechanisms of virion transmission from person to person are poorly understood. The keratinocyte is the target cell of HPV infection. As keratinocytes differentiate, nuclei are lost and the cornified cell envelope develops. Layers of these desquamated cornified cells (DCCs) are continuously shed from the stratum corneum. Release of HPV requires the cornified cell envelope, a normally very durable structure, to break apart, liberating the contents of the cell. In differentiated keratinocytes infected with HPV 11, the cornified cell envelope is abnormally thin and fragile. In this study, DCCs from HPV 11-infected genital epithelium were used to investigate the mechanisms of viral transmission. First, HPV 11-infected tissue was examined for the presence of virions by transmission electron microscopy. Virions were observed in the nuclei of differentiated keratinocytes. In addition, virions were detected in the cytoplasm of DCCs that had undergone nuclear dissolution. Rarely, virions were observed outside of cells. Next, infectivity of intact and ruptured DCCs was tested in an assay performed in the athymic mouse xenograft system. High-titer cesium chloride gradient-purified HPV 11 virions infected 100% of recovered xenografts. Using intact DCCs derived from HPV 11-infected tissue, 62.5% of recovered xenografts were infected. To test the effects of mechanical stress on infectivity, DCCs were ruptured by sonication and used in the infectivity assay. The infectivity rate increased to 90%. We conclude that DCCs serve as vehicles for efficient, concentrated delivery of virions in HPV 11 infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.