Abstract

Liposomes are closed-membrane vesicles comprised of lipid bilayers, in which the inside of the vesicles is isolated from the external environment. Liposomes are therefore often used as models for biomembranes and as drug delivery carriers. However, materials encapsulated within liposomes often cannot respond to changes in the external environment. The ability of enclosed materials to maintain their responsiveness to changes in the external environment following encapsulation into liposomes would greatly expand the applicability of such systems. We hypothesize that embedding pore-like "access points" into the liposomal membrane could allow for the transmission of information between the internal and external liposomal environments and thus overcome this inherent limitation of conventional liposomes. To investigate this, we evaluated whether a change in the pH of an external solution could be transmitted to the inside of liposomes through the pore-forming protein, yeast voltage-dependent anion channel (VDAC). Transmission of a pH change via VDAC was evaluated using a polyglutamic acid/doxorubicin complex (PGA/Dox) as an internal pH sensor. Upon encapsulation into conventional liposomes, PGA/Dox exhibits no pH sensitivity due to isolation from the external environment. On the other hand, PGA/Dox was found to retain its pH sensitivity upon encapsulation into VDAC-reconstituted liposomes, suggesting that VDAC facilitated the transmission of information on the pH of the external environment to the inside of the liposomes. In conclusion, we successfully demonstrated the transmission of information between the external and internal liposomal environments by a stable pore-like structure embedded into the liposomal membranes, which serve as access points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.