Abstract

DNA supercoiling is an important regulator of gene activity. The transmission of transcription-generated supercoiling wave along a DNA helix provides a way for a gene being transcribed to communicate with and regulate its neighboring genes. Currently, the dynamic behavior of supercoiling transmission remains unclear owing to the lack of a suitable tool for detecting the dynamics of supercoiling transmission. In this work, we established a torsion sensor that quantitatively monitors supercoiling transmission in real time in DNA. Using this sensor, we studied the transmission of transcriptionally generated negative supercoiling in linear and multi-way DNA duplexes. We found that transcription-generated dynamic supercoiling not only transmits along linear DNA duplex but also equally diverges at and proceeds through multi-way DNA junctions. We also show that such a process is regulated by DNA–protein interactions and non-canonical DNA structures in the path of supercoiling transmission. These results imply a transcription-coupled mechanism of dynamic supercoiling-mediated intra- and inter-chromosomal signal transduction pathway and their regulation in DNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call